Modeling and Analyzing Duty-Cycling, Pipelined-Scheduling MACs for Linear Sensor Networks

Linear sensor networks (LSNs) have recently attracted increasing attention due to the vast requirements on the monitoring and surveillance of a structure or area with a linear topology. However, there is little work on the network modeling and analysis based on a duty-cycling MAC protocol for LSNs. In this paper, we model a duty-cycling MAC with a pipelinedscheduling feature for an LSN, where each node is responsible for monitoring a certain area and can generate packets according to its sensed results.

Based on the model, we analyze the network performance in terms of the system throughput, active time ratio per cycle of each node, and packet delivery latency. Through the extensiveOPNET-based simulations, we validate the model and reveal the dependency of the network performance on various system parameters. Besides enabling the effective estimation of the protocol performance by using our model, we believe that our model and analysis could provide an insightful understanding on the behavior of a duty-cycling MAC protocol and aid its design and optimization for a multi-hop LSN.